My Vowels Matter: Formant Automation Tools For Diverse Child Speech

Hannah Valentine, M.S., CCC-SLP (she/her) - New York University

Joel MacAuslan, Ph.D. (he/him) - STAR Corp.

Maria Grigos, Ph.D., CCC-SLP (she/her) - New York University

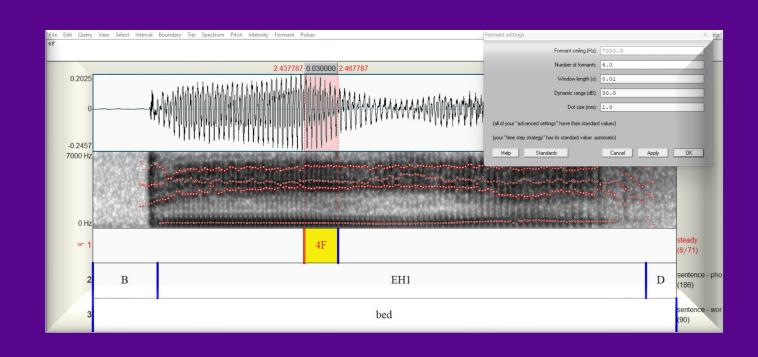
Marisha Speights, Ph.D., CCC-SLP (she/her) - Northwestern University

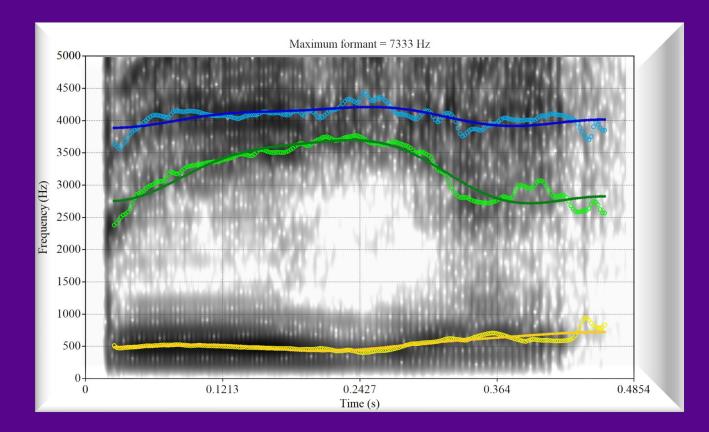
The Problem

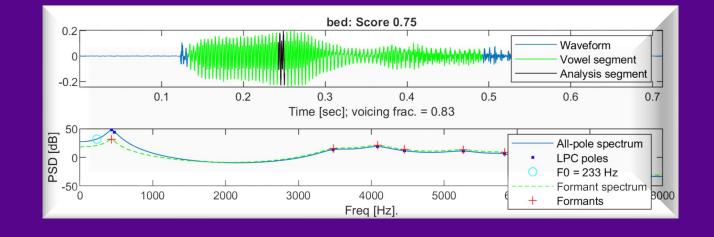
- Pediatric vowels have... (Vorperian & Kent, 2007)
 - high f0, which impacts F1 measurement
 - variable formant values
 - wide formant bandwidths
 - increased subglottal coupling

The Speaker & Stimuli

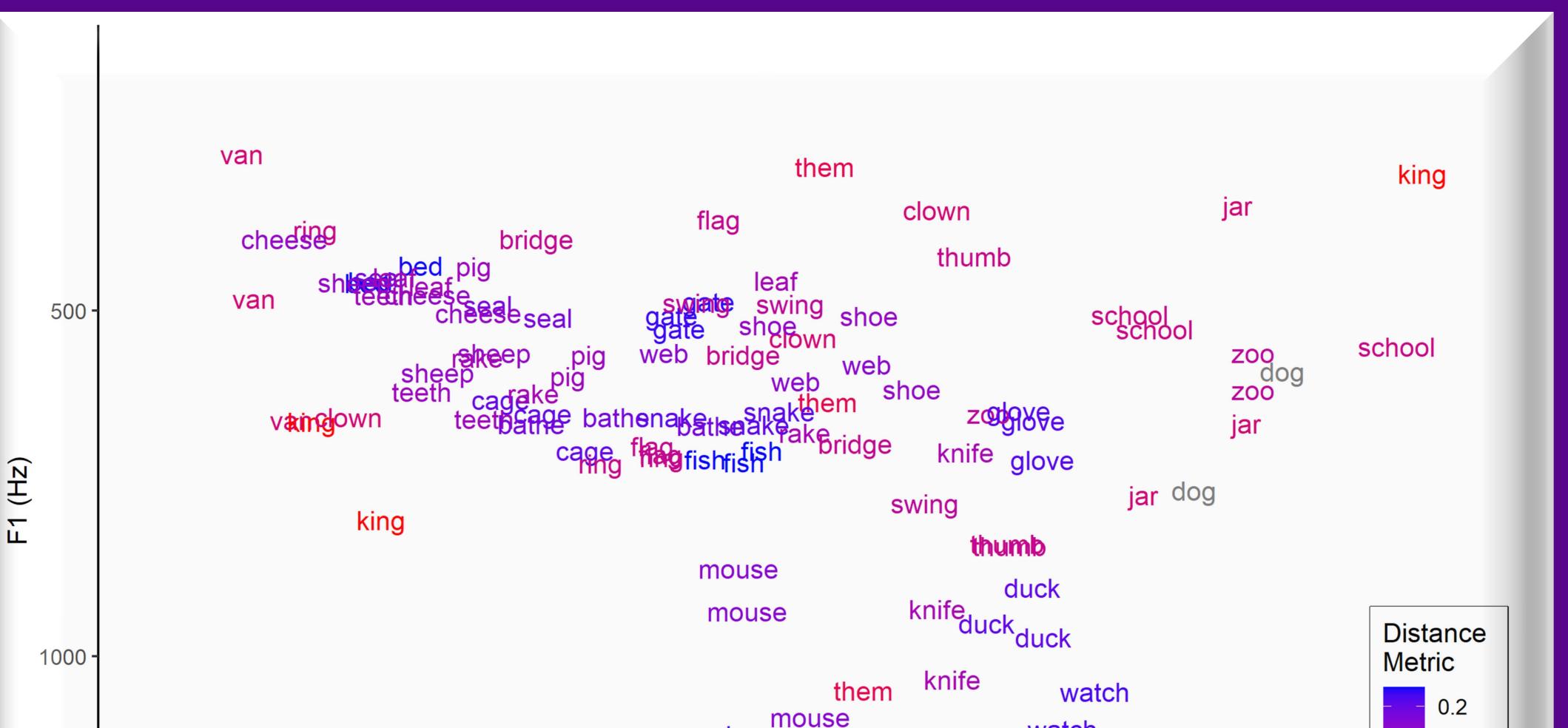
- AFAB, age 5;2
- From a family that identifies as Black/African American
- Speaks Southern American English and African American English
- Has a speech sound disability
- 35 single-word recordings from the Speech Exemplar and Evaluation Database (SEED) (Speights et al., 2020)


The Tools


- Many speech disabilities are characterized by challenges with vowel productions (Ball & Gibbon, 2013)
- Midpoint ≠ steady state, especially when working with speech sound disabilities (Kent & Vorperian, 2018)
- Dialectical variation changes vowel acoustics (Fox & Jacewicz, 2009; Oder et al., 2013)
- Best practices in pediatric acoustic research currently involve manual processing for every token (Derdemezis et al., 2016; Vallabha & Tuller, 2002)


The Goal: Automation

- Automatic formant measurement means...
 - less reliance on biased auditory-perceptual measures
 - more data = (hopefully) more diverse data
 - future-proofing our field for the era of big data
 - more clinical relevance


- Voweltine© (Valentine et al, 2022)
 - Runs in Praat
 - Developed for monophthong productions of children with speech sound disorders
 - Manipulates linear predictive coding filter order
- Fast Track© (Barreda, 2021)
 - Runs in Praat
 - Developed for adult speech
 - Manipulates linear predictive coding frequency ceiling
- SpeechMark® (Boyce et al., 2012)
 - Runs in MATLAB
 - Automatically identifies vowel segments
 - Developed for adults, children, and infants

The Results

Key Takeaways

- More tool validation is needed on diverse datasets!
- Before selecting an automation tool, users should consider...
 - Participant population
 - Vowel type
 - Data format
 - Research goals
 - Desired outcomes
- Extra care is needed with pediatric speech with linguistic variation

Blue indicates high measurement agreement across tools Red indicates low measurement agreement across tools Grey indicates the token failed for at least one tool		house watch house hive hive hive	0.4 - 0.6	
4000	3000	2000	1000	
		F2 (Hz)		

Acknowledgements

- The authors would like to thank Santiago Barreda, the developer of Fast Track, for consulting on this project.
- SpeechMark research and development were supported in part by the United States National Institutes of Health (5R44DC010104-04, 3R44DC010104-03S1)

References

- Ball, M., & Gibbon, F. (Eds.). (2013). *Handbook of vowels and vowel disorders*. Psychology Press.
- Barreda, S. (2021). Fast Track: fast (nearly) automatic formant-tracking using Praat. *Linguistics Vanguard*, 7(1).
- Boyce, S., Fell, H., & MacAuslan, J. (2012). SpeechMark: Landmark detection tool for speech analysis. In *Thirteenth Annual Conference of the International Speech Communication Association.*
- Derdemezis, E., Vorperian, H. K., Kent, R. D., Fourakis, M., Reinicke, E. L., & Bolt, D. M. (2016). Optimizing Vowel Formant Measurements in Four Acoustic Analysis Systems for Diverse Speaker Groups. *American Journal of Speech-Language Pathology, 25*(3), 335–354.
- Fox, R. A., & Jacewicz, E. (2009). Cross-dialectal variation in formant dynamics of American English vowels. *The Journal of the Acoustical Society of America*, *126*(5), 2603-2618.
- Kent, R. D., & Vorperian, H. K. (2018). Static measurements of vowel formant frequencies and bandwidths: A review. *Journal of communication disorders*, *74*, 74-97.
- Oder, A. L., Clopper, C. G., & Ferguson, S. H. (2013). Effects of dialect on vowel acoustics and intelligibility. *Journal of the International Phonetic Association*, *43*(1), 23-35.
- Speights, M., Bailey, D. J., & Boyce, S. E. (2020). Speech exemplar and evaluation database (SEED) for clinical training in articulatory phonetics and speech science. *Clinical Linguistics & Phonetics, 34*(9), 878-886.
- Valentine, H., Carozzi, G., Grigos, M. (2022) *Automating Vowel Formant Estimations for Disordered Pediatric Speech Samples* [Special conference session]. Conference on Motor Speech, Charleston, SC.
- Vallabha, G. K., & Tuller, B. (2002). Systematic errors in the formant analysis of steadystate vowels. *Speech Communication, 38*(1–2), 141–160.
- Vorperian, H. K., & Kent, R. D. (2007). Vowel Acoustic Space Development in Children: A Synthesis of Acoustic and Anatomic Data. *Journal of Speech, Language, and Hearing Research, 50*(6), 1510–1545.